Nanomechanical analysis of bone tissue engineering scaffolds.
نویسندگان
چکیده
Copolymers of (2-hydroxyethyl methacrylate) (HEMA) and methacrylamide monomers conjugated with amino acids were synthesized and crosslinked with ethylene glycol dimethacrylate. The resulting library of copolymers was mineralized in vitro using two distinct methods. In the first mineralization method, the copolymers were polymerized in the presence of a sub-micron hydroxyapatite (HA) suspension. In the second method, copolymers were mineralized with HA using a urea-mediated process. The mechanical properties of all of the copolymers, both mineralized and not, were determined using nanoindentation under both load and displacement control. A power law fit to the initial unloading curve was used to determine a reduced elastic modulus for each material. Between 30 and 300 indentations were performed on each material, and ANOVA analysis was run to determine the statistical significance of differences in modulus between samples. Using nanoindentation, the 22 different samples had reduced modulus values ranging from 840 MPa to 4.14 GPa. Aspartic acid-methacrylate (Asp-MA) copolymers were not distinguishable from the pHEMA control material. Polymerization in the presence of HA created a more uniform material than the urea method of mineralization. Several challenges and solutions encountered in the nanomechanical testing of soft, heterogeneous materials are discussed. These results demonstrate that with proper experimental design, the mechanical properties of tissue engineering scaffold materials based on polymer-ceramic composite materials can be determined using small samples and nanoindentation techniques.
منابع مشابه
A Review on Commonly Used Scaffolds in Tissue Engineering for Bone Tissue Regeneration
Introduction: Bone is one of the tissues that have a true potential for regeneration. However, sometimes the bone defects are so outsized that there is no chance of bone self-repair and restoration or the damage is such that it is not possible to repair with medical or surgical interventions. In these situations, bone grafts are the treatment of choice, but due to several obstacles, including l...
متن کاملSynthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application
A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...
متن کاملAligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering
Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...
متن کاملHydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications
Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...
متن کاملFabrication and Characterization of Polycaprolactone – Zeolite Y Nanocomposite for Bone Tissue Engineering
In recent years, nanoceramics have been used in scaffolds to emulate the nanocomposite with a three-dimensional structure of natural bone tissue. In this regard, polycaprolactone biopolymer is widely used as a scaffold in bone tissue engineering. The goal of this research is to produce porous scaffolds of polycaprolactone - zeolite biocomposite with suitable mechanical, bioactive and biological...
متن کاملElectrospun biocompatible Gelatin-Chitosan/Polycaprolactone/Hydroxyapatite nanocomposite scaffold for bone tissue engineering
In recent years, nanocomposite scaffolds made of bioactive polymers have found multiple applications in bone tissue engineering. In this study composite nanofibrous structure of gelatin (Gel)/chitosan (Cs)-polycaprolactone (PCL) containing hydroxyapatite (HA) were fabricated using co-electrospinning process. To assay the biocompatibility and bioactivity of electrospun nanocomposite scaffolds, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 81 3 شماره
صفحات -
تاریخ انتشار 2007